Loading... <div class="tip share">请注意,本文编写于 1991 天前,最后修改于 1789 天前,其中某些信息可能已经过时。</div> kubeadm是Kubernetes官方提供的用于快速安装Kubernetes集群的工具,伴随Kubernetes每个版本的发布都会同步更新,kubeadm会对集群配置方面的一些实践做调整,通过实验kubeadm可以学习到Kubernetes官方在集群配置上一些新的最佳实践。 最近发布的Kubernetes 1.15中,kubeadm对HA集群的配置已经达到beta可用,说明kubeadm距离生产环境中可用的距离越来越近了。 ## 1.准备 ### 1.1系统配置 在安装之前,需要先做如下准备。两台CentOS 7.6主机如下: ``` cat /etc/hosts 172.20.0.11 ip-172-20-0-11.cu-sd-cn.vm.7x34.com 172.20.0.12 ip-172-20-0-12.cu-sd-cn.vm.7x34.com ``` 如果各个主机启用了防火墙,需要开放Kubernetes各个组件所需要的端口,可以查看Installing kubeadm中的”Check required ports”一节。 这里简单起见在各节点禁用防火墙: ``` systemctl stop firewalld systemctl disable firewalld ``` 禁用SELINUX: ``` setenforce 0 vi /etc/selinux/config SELINUX=disabled ``` 创建`/etc/sysctl.d/k8s.conf`文件,添加如下内容: ``` net.bridge.bridge-nf-call-ip6tables = 1 net.bridge.bridge-nf-call-iptables = 1 net.ipv4.ip_forward = 1 ``` 执行命令使修改生效。 ``` modprobe br_netfilter sysctl -p /etc/sysctl.d/k8s.conf ``` ###1.2kube-proxy开启ipvs的前置条件 由于ipvs已经加入到了内核的主干,所以为kube-proxy开启ipvs的前提需要加载以下的内核模块: ``` ip_vs ip_vs_rr ip_vs_wrr ip_vs_sh nf_conntrack_ipv4 ``` 在所有的Kubernetes节点node1和node2上执行以下脚本: ``` cat > /etc/sysconfig/modules/ipvs.modules <<EOF #!/bin/bash modprobe -- ip_vs modprobe -- ip_vs_rr modprobe -- ip_vs_wrr modprobe -- ip_vs_sh modprobe -- nf_conntrack_ipv4 EOF chmod 755 /etc/sysconfig/modules/ipvs.modules && bash /etc/sysconfig/modules/ipvs.modules && lsmod | grep -e ip_vs -e nf_conntrack_ipv4 ``` 上面脚本创建了的/etc/sysconfig/modules/ipvs.modules文件,保证在节点重启后能自动加载所需模块。 使用lsmod | grep -e ip_vs -e nf_conntrack_ipv4命令查看是否已经正确加载所需的内核模块。 接下来还需要确保各个节点上已经安装了ipset软件包yum install ipset。 为了便于查看ipvs的代理规则,最好安装一下管理工具ipvsadm yum install ipvsadm。 如果以上前提条件如果不满足,则即使kube-proxy的配置开启了ipvs模式,也会退回到iptables模式。 ### 1.3安装Docker Kubernetes从1.6开始使用CRI(Container Runtime Interface)容器运行时接口。默认的容器运行时仍然是Docker,使用的是kubelet中内置dockershim CRI实现。 安装docker的yum源: ``` yum install -y yum-utils device-mapper-persistent-data lvm2 sudo yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo ``` 查看最新的Docker版本: ``` yum list docker-ce.x86_64 --showduplicates |sort -r docker-ce.x86_64 3:18.09.7-3.el7 docker-ce-stable docker-ce.x86_64 3:18.09.6-3.el7 docker-ce-stable docker-ce.x86_64 3:18.09.5-3.el7 docker-ce-stable docker-ce.x86_64 3:18.09.4-3.el7 docker-ce-stable docker-ce.x86_64 3:18.09.3-3.el7 docker-ce-stable docker-ce.x86_64 3:18.09.2-3.el7 docker-ce-stable docker-ce.x86_64 3:18.09.1-3.el7 docker-ce-stable docker-ce.x86_64 3:18.09.0-3.el7 docker-ce-stable docker-ce.x86_64 18.06.3.ce-3.el7 docker-ce-stable docker-ce.x86_64 18.06.2.ce-3.el7 docker-ce-stable docker-ce.x86_64 18.06.1.ce-3.el7 docker-ce-stable docker-ce.x86_64 18.06.0.ce-3.el7 docker-ce-stable docker-ce.x86_64 18.03.1.ce-1.el7.centos docker-ce-stable docker-ce.x86_64 18.03.0.ce-1.el7.centos docker-ce-stable ... ``` Kubernetes 1.15当前支持的docker版本列表是1.13.1, 17.03, 17.06, 17.09, 18.06, 18.09。 这里在各节点安装docker的18.09.7版本。 ``` yum makecache fast yum install -y --setopt=obsoletes=0 \ docker-ce-18.09.7-3.el7 systemctl start docker systemctl enable docker ``` 确认一下iptables filter表中FOWARD链的默认策略(pllicy)为ACCEPT。 ``` iptables -nvL Chain INPUT (policy ACCEPT 263 packets, 19209 bytes) pkts bytes target prot opt in out source destination Chain FORWARD (policy ACCEPT 0 packets, 0 bytes) pkts bytes target prot opt in out source destination 0 0 DOCKER-USER all -- * * 0.0.0.0/0 0.0.0.0/0 0 0 DOCKER-ISOLATION-STAGE-1 all -- * * 0.0.0.0/0 0.0.0.0/0 0 0 ACCEPT all -- * docker0 0.0.0.0/0 0.0.0.0/0 ctstate RELATED,ESTABLISHED 0 0 DOCKER all -- * docker0 0.0.0.0/0 0.0.0.0/0 0 0 ACCEPT all -- docker0 !docker0 0.0.0.0/0 0.0.0.0/0 0 0 ACCEPT all -- docker0 docker0 0.0.0.0/0 0.0.0.0/0 ``` ### 1.4 修改docker cgroup driver为systemd 根据文档CRI installation中的内容,对于使用systemd作为init system的Linux的发行版,使用systemd作为docker的cgroup driver可以确保服务器节点在资源紧张的情况更加稳定,因此这里修改各个节点上docker的cgroup driver为systemd。 创建或修改/etc/docker/daemon.json: ``` { "exec-opts": ["native.cgroupdriver=systemd"] } ``` 重启docker: ``` systemctl restart docker docker info | grep Cgroup Cgroup Driver: systemd ``` ## 2.使用kubeadm部署Kubernetes ### 2.1 安装kubeadm和kubelet 下面在各节点安装kubeadm和kubelet: ``` cat <<EOF > /etc/yum.repos.d/kubernetes.repo [kubernetes] name=Kubernetes baseurl=https://mirrors.aliyun.com/kubernetes/yum/repos/kubernetes-el7-x86_64/ enabled=1 gpgcheck=1 repo_gpgcheck=1 gpgkey=https://mirrors.aliyun.com/kubernetes/yum/doc/yum-key.gpg https://mirrors.aliyun.com/kubernetes/yum/doc/rpm-package-key.gpg EOF ``` 安装kubeadm、kubectl、kubelet ``` yum makecache fast yum install -y kubelet kubeadm kubectl ... Installed: kubeadm.x86_64 0:1.15.0-0 kubectl.x86_64 0:1.15.0-0 kubelet.x86_64 0:1.15.0-0 Dependency Installed: conntrack-tools.x86_64 0:1.4.4-4.el7 cri-tools.x86_64 0:1.12.0-0 kubernetes-cni.x86_64 0:0.7.5-0 libnetfilter_cthelper.x86_64 0:1.0.0-9.el7 libnetfilter_cttimeout.x86_64 0:1.0.0-6.el7 libnetfilter_queue.x86_64 0:1.0.2-2.el7_2 socat.x86_64 0:1.7.3.2-2.el7 ``` 从安装结果可以看出还安装了cri-tools, kubernetes-cni, socat三个依赖: * 官方从Kubernetes 1.14开始将cni依赖升级到了0.7.5版本 * socat是kubelet的依赖 * cri-tools是CRI(Container Runtime Interface)容器运行时接口的命令行工具 运行kubelet --help可以看到原来kubelet的绝大多数命令行flag参数都被DEPRECATED了,如: ``` ...... --address 0.0.0.0 The IP address for the Kubelet to serve on (set to 0.0.0.0 for all IPv4 interfaces and `::` for all IPv6 interfaces) (default 0.0.0.0) (DEPRECATED: This parameter should be set via the config file specified by the Kubelet's --config flag. See https://kubernetes.io/docs/tasks/administer-cluster/kubelet-config-file/ for more information.) ...... ``` 而官方推荐我们使用--config指定配置文件,并在配置文件中指定原来这些flag所配置的内容。具体内容可以查看这里Set Kubelet parameters via a config file。这也是Kubernetes为了支持动态Kubelet配置(Dynamic Kubelet Configuration)才这么做的,参考Reconfigure a Node’s Kubelet in a Live Cluster。 kubelet的配置文件必须是json或yaml格式,具体可查看这里。 Kubernetes 1.8开始要求关闭系统的Swap,如果不关闭,默认配置下kubelet将无法启动。 关闭系统的Swap方法如下: ``` swapoff -a ``` 修改 /etc/fstab 文件,注释掉 SWAP 的自动挂载,使用free -m确认swap已经关闭。 swappiness参数调整,修改/etc/sysctl.d/k8s.conf添加下面一行: ``` vm.swappiness=0 ``` 执行`sysctl -p /etc/sysctl.d/k8s.conf`使修改生效。 因为这里本次用于测试两台主机上还运行其他服务,关闭swap可能会对其他服务产生影响,所以这里修改kubelet的配置去掉这个限制。 使用kubelet的启动参数--fail-swap-on=false去掉必须关闭Swap的限制,修改/etc/sysconfig/kubelet,加入: ``` KUBELET_EXTRA_ARGS=--fail-swap-on=false ``` ### 2.2 使用kubeadm init初始化集群 在各节点开机启动kubelet服务: ``` systemctl enable kubelet.service ``` 使用`kubeadm config print init-defaults`可以打印集群初始化默认的使用的配置: ``` apiVersion: kubeadm.k8s.io/v1beta2 bootstrapTokens: - groups: - system:bootstrappers:kubeadm:default-node-token token: abcdef.0123456789abcdef ttl: 24h0m0s usages: - signing - authentication kind: InitConfiguration localAPIEndpoint: advertiseAddress: 1.2.3.4 bindPort: 6443 nodeRegistration: criSocket: /var/run/dockershim.sock name: node1 taints: - effect: NoSchedule key: node-role.kubernetes.io/master --- apiServer: timeoutForControlPlane: 4m0s apiVersion: kubeadm.k8s.io/v1beta2 certificatesDir: /etc/kubernetes/pki clusterName: kubernetes controllerManager: {} dns: type: CoreDNS etcd: local: dataDir: /var/lib/etcd imageRepository: k8s.gcr.io kind: ClusterConfiguration kubernetesVersion: v1.14.0 networking: dnsDomain: cluster.local serviceSubnet: 10.96.0.0/12 scheduler: {} ``` 从默认的配置中可以看到,可以使用imageRepository定制在集群初始化时拉取k8s所需镜像的地址。基于默认配置定制出本次使用kubeadm初始化集群所需的配置文件kubeadm.yaml: ``` apiVersion: kubeadm.k8s.io/v1beta2 kind: InitConfiguration localAPIEndpoint: advertiseAddress: 192.168.99.11 bindPort: 6443 nodeRegistration: taints: - effect: PreferNoSchedule key: node-role.kubernetes.io/master --- apiVersion: kubeadm.k8s.io/v1beta2 kind: ClusterConfiguration kubernetesVersion: v1.15.0 networking: podSubnet: 10.244.0.0/16 ``` 使用kubeadm默认配置初始化的集群,会在master节点打上`node-role.kubernetes.io/master:NoSchedule`的污点,阻止master节点接受调度运行工作负载。这里测试环境只有两个节点,所以将这个taint修改为node-role.kubernetes.io/master:PreferNoSchedule。 在开始初始化集群之前可以使用`kubeadm config images pull`预先在各个节点上拉取所k8s需要的docker镜像。 接下来使用kubeadm初始化集群,选择node1作为Master Node,在node1上执行下面的命令: ``` kubeadm init --config kubeadm.yaml --ignore-preflight-errors=Swap [init] Using Kubernetes version: v1.15.0 [preflight] Running pre-flight checks [WARNING Swap]: running with swap on is not supported. Please disable swap [preflight] Pulling images required for setting up a Kubernetes cluster [preflight] This might take a minute or two, depending on the speed of your internet connection [preflight] You can also perform this action in beforehand using 'kubeadm config images pull' [kubelet-start] Writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env" [kubelet-start] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml" [kubelet-start] Activating the kubelet service [certs] Using certificateDir folder "/etc/kubernetes/pki" [certs] Generating "etcd/ca" certificate and key [certs] Generating "apiserver-etcd-client" certificate and key [certs] Generating "etcd/server" certificate and key [certs] etcd/server serving cert is signed for DNS names [node1 localhost] and IPs [192.168.99.11 127.0.0.1 ::1] [certs] Generating "etcd/peer" certificate and key [certs] etcd/peer serving cert is signed for DNS names [node1 localhost] and IPs [192.168.99.11 127.0.0.1 ::1] [certs] Generating "etcd/healthcheck-client" certificate and key [certs] Generating "ca" certificate and key [certs] Generating "apiserver" certificate and key [certs] apiserver serving cert is signed for DNS names [node1 kubernetes kubernetes.default kubernetes.default.svc kubernetes.default.svc.cluster.local] and IPs [10.96.0.1 192.168.99.11] [certs] Generating "apiserver-kubelet-client" certificate and key [certs] Generating "front-proxy-ca" certificate and key [certs] Generating "front-proxy-client" certificate and key [certs] Generating "sa" key and public key [kubeconfig] Using kubeconfig folder "/etc/kubernetes" [kubeconfig] Writing "admin.conf" kubeconfig file [kubeconfig] Writing "kubelet.conf" kubeconfig file [kubeconfig] Writing "controller-manager.conf" kubeconfig file [kubeconfig] Writing "scheduler.conf" kubeconfig file [control-plane] Using manifest folder "/etc/kubernetes/manifests" [control-plane] Creating static Pod manifest for "kube-apiserver" [control-plane] Creating static Pod manifest for "kube-controller-manager" [control-plane] Creating static Pod manifest for "kube-scheduler" [etcd] Creating static Pod manifest for local etcd in "/etc/kubernetes/manifests" [wait-control-plane] Waiting for the kubelet to boot up the control plane as static Pods from directory "/etc/kubernetes/manifests". This can take up to 4m0s [apiclient] All control plane components are healthy after 26.004907 seconds [upload-config] Storing the configuration used in ConfigMap "kubeadm-config" in the "kube-system" Namespace [kubelet] Creating a ConfigMap "kubelet-config-1.15" in namespace kube-system with the configuration for the kubelets in the cluster [upload-certs] Skipping phase. Please see --upload-certs [mark-control-plane] Marking the node node1 as control-plane by adding the label "node-role.kubernetes.io/master=''" [mark-control-plane] Marking the node node1 as control-plane by adding the taints [node-role.kubernetes.io/master:PreferNoSchedule] [bootstrap-token] Using token: 4qcl2f.gtl3h8e5kjltuo0r [bootstrap-token] Configuring bootstrap tokens, cluster-info ConfigMap, RBAC Roles [bootstrap-token] configured RBAC rules to allow Node Bootstrap tokens to post CSRs in order for nodes to get long term certificate credentials [bootstrap-token] configured RBAC rules to allow the csrapprover controller automatically approve CSRs from a Node Bootstrap Token [bootstrap-token] configured RBAC rules to allow certificate rotation for all node client certificates in the cluster [bootstrap-token] Creating the "cluster-info" ConfigMap in the "kube-public" namespace [addons] Applied essential addon: CoreDNS [addons] Applied essential addon: kube-proxy Your Kubernetes control-plane has initialized successfully! To start using your cluster, you need to run the following as a regular user: mkdir -p $HOME/.kube sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config sudo chown $(id -u):$(id -g) $HOME/.kube/config You should now deploy a pod network to the cluster. Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at: https://kubernetes.io/docs/concepts/cluster-administration/addons/ Then you can join any number of worker nodes by running the following on each as root: kubeadm join 192.168.99.11:6443 --token 4qcl2f.gtl3h8e5kjltuo0r \ --discovery-token-ca-cert-hash sha256:7ed5404175cc0bf18dbfe53f19d4a35b1e3d40c19b10924275868ebf2a3bbe6e ``` 上面记录了完成的初始化输出的内容,根据输出的内容基本上可以看出手动初始化安装一个Kubernetes集群所需要的关键步骤。 其中有以下关键内容: * [kubelet-start] 生成kubelet的配置文件”/var/lib/kubelet/config.yaml” * [certs]生成相关的各种证书 * [kubeconfig]生成相关的kubeconfig文件 * [control-plane]使用/etc/kubernetes/manifests目录中的yaml文件创建apiserver、controller-manager、scheduler的静态pod * [bootstraptoken]生成token记录下来,后边使用kubeadm join往集群中添加节点时会用到 * 下面的命令是配置常规用户如何使用kubectl访问集群: * ``` mkdir -p $HOME/.kube sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config sudo chown $(id -u):$(id -g) $HOME/.kube/config ``` * 最后给出了将节点加入集群的命令kubeadm join 192.168.99.11:6443 --token 4qcl2f.gtl3h8e5kjltuo0r \ --discovery-token-ca-cert-hash sha256:7ed5404175cc0bf18dbfe53f19d4a35b1e3d40c19b10924275868ebf2a3bbe6e 查看一下集群状态,确认个组件都处于healthy状态: ``` kubectl get cs NAME STATUS MESSAGE ERROR controller-manager Healthy ok scheduler Healthy ok etcd-0 Healthy {"health":"true"} ``` 集群初始化如果遇到问题,可以使用下面的命令进行清理: ``` kubeadm reset ifconfig cni0 down ip link delete cni0 ifconfig flannel.1 down ip link delete flannel.1 rm -rf /var/lib/cni/ ``` ### 2.3 安装Pod Network 接下来安装flannel network add-on: ``` mkdir -p ~/k8s/ cd ~/k8s curl -O https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml kubectl apply -f kube-flannel.yml clusterrole.rbac.authorization.k8s.io/flannel created clusterrolebinding.rbac.authorization.k8s.io/flannel created serviceaccount/flannel created configmap/kube-flannel-cfg created daemonset.extensions/kube-flannel-ds-amd64 created daemonset.extensions/kube-flannel-ds-arm64 created daemonset.extensions/kube-flannel-ds-arm created daemonset.extensions/kube-flannel-ds-ppc64le created daemonset.extensions/kube-flannel-ds-s390x created ``` 这里注意kube-flannel.yml这个文件里的flannel的镜像是0.11.0,quay.io/coreos/flannel:v0.11.0-amd64 如果Node有多个网卡的话,参考flannel issues 39701,目前需要在kube-flannel.yml中使用--iface参数指定集群主机内网网卡的名称,否则可能会出现dns无法解析。需要将kube-flannel.yml下载到本地,flanneld启动参数加上`--iface=<iface-name>` ``` ...... containers: - name: kube-flannel image: quay.io/coreos/flannel:v0.11.0-amd64 command: - /opt/bin/flanneld args: - --ip-masq - --kube-subnet-mgr - --iface=eth1 ...... ``` 使用kubectl get pod --all-namespaces -o wide确保所有的Pod都处于Running状态。 ``` kubectl get pod -n kube-system NAME READY STATUS RESTARTS AGE coredns-5c98db65d4-dr8lf 1/1 Running 0 52m coredns-5c98db65d4-lp8dg 1/1 Running 0 52m etcd-node1 1/1 Running 0 51m kube-apiserver-node1 1/1 Running 0 51m kube-controller-manager-node1 1/1 Running 0 51m kube-flannel-ds-amd64-mm296 1/1 Running 0 44s kube-proxy-kchkf 1/1 Running 0 52m kube-scheduler-node1 1/1 Running 0 51m ``` ### 2.4 测试集群DNS是否可用 ``` kubectl run curl --image=radial/busyboxplus:curl -it kubectl run --generator=deployment/apps.v1beta1 is DEPRECATED and will be removed in a future version. Use kubectl create instead. If you don't see a command prompt, try pressing enter. [ root@curl-5cc7b478b6-r997p:/ ]$ ``` 进入后执行nslookup kubernetes.default确认解析正常: ``` nslookup kubernetes.default Server: 10.96.0.10 Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local Name: kubernetes.default Address 1: 10.96.0.1 kubernetes.default.svc.cluster.local ``` ### 2.5 向Kubernetes集群中添加Node节点 下面将node2这个主机添加到Kubernetes集群中,在node2上执行: ``` kubeadm join 192.168.99.11:6443 --token 4qcl2f.gtl3h8e5kjltuo0r \ --discovery-token-ca-cert-hash sha256:7ed5404175cc0bf18dbfe53f19d4a35b1e3d40c19b10924275868ebf2a3bbe6e \ --ignore-preflight-errors=Swap [preflight] Running pre-flight checks [WARNING Swap]: running with swap on is not supported. Please disable swap [WARNING Service-Kubelet]: kubelet service is not enabled, please run 'systemctl enable kubelet.service' [preflight] Reading configuration from the cluster... [preflight] FYI: You can look at this config file with 'kubectl -n kube-system get cm kubeadm-config -oyaml' [kubelet-start] Downloading configuration for the kubelet from the "kubelet-config-1.15" ConfigMap in the kube-system namespace [kubelet-start] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml" [kubelet-start] Writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env" [kubelet-start] Activating the kubelet service [kubelet-start] Waiting for the kubelet to perform the TLS Bootstrap... This node has joined the cluster: * Certificate signing request was sent to apiserver and a response was received. * The Kubelet was informed of the new secure connection details. Run 'kubectl get nodes' on the control-plane to see this node join the cluster. ``` node2加入集群很是顺利,下面在master节点上执行命令查看集群中的节点: ``` kubectl get node NAME STATUS ROLES AGE VERSION node1 Ready master 57m v1.15.0 node2 Ready <none> 11s v1.15.0 ``` #### 2.5.1 如何从集群中移除Node 如果需要从集群中移除node2这个Node执行下面的命令: 在master节点上执行: ``` kubectl drain node2 --delete-local-data --force --ignore-daemonsets kubectl delete node node2 ``` 在node2上执行: ``` kubeadm reset ifconfig cni0 down ip link delete cni0 ifconfig flannel.1 down ip link delete flannel.1 rm -rf /var/lib/cni/ ``` 在node1上执行: ``` kubectl delete node node2 ``` ### 2.6 kube-proxy开启ipvs 修改ConfigMap的kube-system/kube-proxy中的config.conf,mode: "ipvs": ``` kubectl edit cm kube-proxy -n kube-system ``` 之后重启各个节点上的kube-proxy pod: ``` kubectl get pod -n kube-system | grep kube-proxy | awk '{system("kubectl delete pod "$1" -n kube-system")}' ``` ``` kubectl get pod -n kube-system | grep kube-proxy kube-proxy-7fsrg 1/1 Running 0 3s kube-proxy-k8vhm 1/1 Running 0 9s kubectl logs kube-proxy-7fsrg -n kube-system I0703 04:42:33.308289 1 server_others.go:170] Using ipvs Proxier. W0703 04:42:33.309074 1 proxier.go:401] IPVS scheduler not specified, use rr by default I0703 04:42:33.309831 1 server.go:534] Version: v1.15.0 I0703 04:42:33.320088 1 conntrack.go:52] Setting nf_conntrack_max to 131072 I0703 04:42:33.320365 1 config.go:96] Starting endpoints config controller I0703 04:42:33.320393 1 controller_utils.go:1029] Waiting for caches to sync for endpoints config controller I0703 04:42:33.320455 1 config.go:187] Starting service config controller I0703 04:42:33.320470 1 controller_utils.go:1029] Waiting for caches to sync for service config controller I0703 04:42:33.420899 1 controller_utils.go:1036] Caches are synced for endpoints config controller I0703 04:42:33.420969 1 controller_utils.go:1036] Caches are synced for service config controller ``` 日志中打印出了Using ipvs Proxier,说明ipvs模式已经开启。 ## 3.Kubernetes常用组件部署 越来越多的公司和团队开始使用Helm这个Kubernetes的包管理器,这里也将使用Helm安装Kubernetes的常用组件。 ### 3.1 Helm的安装 Helm由客户端命helm令行工具和服务端tiller组成,Helm的安装十分简单。 下载helm命令行工具到master节点node1的/usr/local/bin下,这里下载的2.14.1版本: ``` curl -O https://get.helm.sh/helm-v2.14.1-linux-amd64.tar.gz tar -zxvf helm-v2.14.1-linux-amd64.tar.gz cd linux-amd64/ cp helm /usr/local/bin/ ``` 为了安装服务端tiller,还需要在这台机器上配置好kubectl工具和kubeconfig文件,确保kubectl工具可以在这台机器上访问apiserver且正常使用。 这里的node1节点已经配置好了kubectl。 因为Kubernetes APIServer开启了RBAC访问控制,所以需要创建tiller使用的service account: tiller并分配合适的角色给它。 详细内容可以查看helm文档中的Role-based Access Control。 这里简单起见直接分配cluster-admin这个集群内置的ClusterRole给它。创建helm-rbac.yaml文件: ``` apiVersion: v1 kind: ServiceAccount metadata: name: tiller namespace: kube-system --- apiVersion: rbac.authorization.k8s.io/v1beta1 kind: ClusterRoleBinding metadata: name: tiller roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: cluster-admin subjects: - kind: ServiceAccount name: tiller namespace: kube-system ``` ``` ubectl create -f helm-rbac.yaml serviceaccount/tiller created clusterrolebinding.rbac.authorization.k8s.io/tiller created ``` 接下来使用helm部署tiller: ``` helm init --service-account tiller --skip-refresh Creating /root/.helm Creating /root/.helm/repository Creating /root/.helm/repository/cache Creating /root/.helm/repository/local Creating /root/.helm/plugins Creating /root/.helm/starters Creating /root/.helm/cache/archive Creating /root/.helm/repository/repositories.yaml Adding stable repo with URL: https://kubernetes-charts.storage.googleapis.com Adding local repo with URL: http://127.0.0.1:8879/charts $HELM_HOME has been configured at /root/.helm. Tiller (the Helm server-side component) has been installed into your Kubernetes Cluster. Please note: by default, Tiller is deployed with an insecure 'allow unauthenticated users' policy. To prevent this, run `helm init` with the --tiller-tls-verify flag. For more information on securing your installation see: https://docs.helm.sh/using_helm/#securing-your-helm-installation Happy Helming! ``` tiller默认被部署在k8s集群中的kube-system这个namespace下: ``` kubectl get pod -n kube-system -l app=helm NAME READY STATUS RESTARTS AGE tiller-deploy-c4fd4cd68-dwkhv 1/1 Running 0 83s ``` ``` helm version Client: &version.Version{SemVer:"v2.14.1", GitCommit:"5270352a09c7e8b6e8c9593002a73535276507c0", GitTreeState:"clean"} Server: &version.Version{SemVer:"v2.14.1", GitCommit:"5270352a09c7e8b6e8c9593002a73535276507c0", GitTreeState:"clean"} ``` 注意由于某些原因需要网络可以访问`gcr.io`和`kubernetes-charts.storage.googleapis.com`,如果无法访问可以通过`helm init --service-account tiller --tiller-image <your-docker-registry>/tiller:v2.13.1 --skip-refresh`使用私有镜像仓库中的tiller镜像 最后在node1上修改helm chart仓库的地址为azure提供的镜像地址: ``` helm repo add stable http://mirror.azure.cn/kubernetes/charts "stable" has been added to your repositories helm repo list NAME URL stable http://mirror.azure.cn/kubernetes/charts local http://127.0.0.1:8879/charts ``` ### 3.2 使用Helm部署Nginx Ingress 为了便于将集群中的服务暴露到集群外部,需要使用Ingress。接下来使用Helm将Nginx Ingress部署到Kubernetes上。 Nginx Ingress Controller被部署在Kubernetes的边缘节点上,关于Kubernetes边缘节点的高可用相关的内容可以查看之前整理的Bare metal环境下Kubernetes Ingress边缘节点的高可用,Ingress Controller使用hostNetwork。 我们将node1(192.168.99.11)做为边缘节点,打上Label: ``` kubectl label node node1 node-role.kubernetes.io/edge= node/node1 labeled kubectl get node NAME STATUS ROLES AGE VERSION node1 Ready edge,master 138m v1.15.0 node2 Ready <none> 82m v1.15.0 ``` stable/nginx-ingress chart的值文件ingress-nginx.yaml如下: ``` controller: replicaCount: 1 hostNetwork: true nodeSelector: node-role.kubernetes.io/edge: '' affinity: podAntiAffinity: requiredDuringSchedulingIgnoredDuringExecution: - labelSelector: matchExpressions: - key: app operator: In values: - nginx-ingress - key: component operator: In values: - controller topologyKey: kubernetes.io/hostname tolerations: - key: node-role.kubernetes.io/master operator: Exists effect: NoSchedule - key: node-role.kubernetes.io/master operator: Exists effect: PreferNoSchedule defaultBackend: nodeSelector: node-role.kubernetes.io/edge: '' tolerations: - key: node-role.kubernetes.io/master operator: Exists effect: NoSchedule - key: node-role.kubernetes.io/master operator: Exists effect: PreferNoSchedule ``` nginx ingress controller的副本数replicaCount为1,将被调度到node1这个边缘节点上。这里并没有指定nginx ingress controller service的externalIPs,而是通过hostNetwork: true设置nginx ingress controller使用宿主机网络。 ``` helm repo update helm install stable/nginx-ingress \ -n nginx-ingress \ --namespace ingress-nginx \ -f ingress-nginx.yaml ``` ``` kubectl get pod -n ingress-nginx -o wide NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES nginx-ingress-controller-cc9b6d55b-pr8vr 1/1 Running 0 10m 192.168.99.11 node1 <none> <none> nginx-ingress-default-backend-cc888fd56-bf4h2 1/1 Running 0 10m 10.244.0.14 node1 <none> <none> ``` 如果访问http://192.168.99.11返回default backend,则部署完成。 ### 3.3 使用Helm部署dashboard kubernetes-dashboard.yaml: ``` image: repository: k8s.gcr.io/kubernetes-dashboard-amd64 tag: v1.10.1 ingress: enabled: true hosts: - k8s.frognew.com annotations: nginx.ingress.kubernetes.io/ssl-redirect: "true" nginx.ingress.kubernetes.io/backend-protocol: "HTTPS" tls: - secretName: frognew-com-tls-secret hosts: - k8s.frognew.com nodeSelector: node-role.kubernetes.io/edge: '' tolerations: - key: node-role.kubernetes.io/master operator: Exists effect: NoSchedule - key: node-role.kubernetes.io/master operator: Exists effect: PreferNoSchedule rbac: clusterAdminRole: true ``` ``` helm install stable/kubernetes-dashboard \ -n kubernetes-dashboard \ --namespace kube-system \ -f kubernetes-dashboard.yaml ``` ``` kubectl -n kube-system get secret | grep kubernetes-dashboard-token kubernetes-dashboard-token-pkm2s kubernetes.io/service-account-token 3 3m7s kubectl describe -n kube-system secret/kubernetes-dashboard-token-pkm2s Name: kubernetes-dashboard-token-pkm2s Namespace: kube-system Labels: <none> Annotations: kubernetes.io/service-account.name: kubernetes-dashboard kubernetes.io/service-account.uid: 2f0781dd-156a-11e9-b0f0-080027bb7c43 Type: kubernetes.io/service-account-token Data ==== ca.crt: 1025 bytes namespace: 11 bytes token: eyJhbGciOiJSUzI1NiIsImtpZCI6IiJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJrdWJlcm5ldGVzLWRhc2hib2FyZC10b2tlbi1wa20ycyIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50Lm5hbWUiOiJrdWJlcm5ldGVzLWRhc2hib2FyZCIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6IjJmMDc4MWRkLTE1NmEtMTFlOS1iMGYwLTA4MDAyN2JiN2M0MyIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDprdWJlLXN5c3RlbTprdWJlcm5ldGVzLWRhc2hib2FyZCJ9.24ad6ZgZMxdydpwlmYAiMxZ9VSIN7dDR7Q6-RLW0qC81ajXoQKHAyrEGpIonfld3gqbE0xO8nisskpmlkQra72-9X6sBPoByqIKyTsO83BQlME2sfOJemWD0HqzwSCjvSQa0x-bUlq9HgH2vEXzpFuSS6Svi7RbfzLXlEuggNoC4MfA4E2hF1OX_ml8iAKx-49y1BQQe5FGWyCyBSi1TD_-ZpVs44H5gIvsGK2kcvi0JT4oHXtWjjQBKLIWL7xxyRCSE4HmUZT2StIHnOwlX7IEIB0oBX4mPg2_xNGnqwcu-8OERU9IoqAAE2cZa0v3b5O2LMcJPrcxrVOukvRIumA ``` 在dashboard的登录窗口使用上面的token登录。 ### 3.4 使用Helm部署metrics-server 从Heapster的github https://github.com/kubernetes/heapster中可以看到已经,heapster已经DEPRECATED。 这里是heapster的deprecation timeline。 可以看出heapster从Kubernetes 1.12开始从Kubernetes各种安装脚本中移除。 Kubernetes推荐使用metrics-server。我们这里也使用helm来部署metrics-server。 metrics-server.yaml: ``` args: - --logtostderr - --kubelet-insecure-tls - --kubelet-preferred-address-types=InternalIP nodeSelector: node-role.kubernetes.io/edge: '' tolerations: - key: node-role.kubernetes.io/master operator: Exists effect: NoSchedule - key: node-role.kubernetes.io/master operator: Exists effect: PreferNoSchedule ``` ``` helm install stable/metrics-server \ -n metrics-server \ --namespace kube-system \ -f metrics-server.yaml ``` 使用下面的命令可以获取到关于集群节点基本的指标信息: ``` kubectl top node NAME CPU(cores) CPU% MEMORY(bytes) MEMORY% node1 650m 32% 1276Mi 73% node2 73m 3% 527Mi 30% Code ``` ``` kubectl top pod -n kube-system NAME CPU(cores) MEMORY(bytes) coredns-5c98db65d4-dr8lf 8m 7Mi coredns-5c98db65d4-lp8dg 6m 8Mi etcd-node1 44m 46Mi kube-apiserver-node1 74m 295Mi kube-controller-manager-node1 35m 50Mi kube-flannel-ds-amd64-7lwm9 2m 8Mi kube-flannel-ds-amd64-mm296 5m 9Mi kube-proxy-7fsrg 1m 11Mi kube-proxy-k8vhm 3m 11Mi kube-scheduler-node1 8m 15Mi kubernetes-dashboard-848b8dd798-c4sc2 2m 14Mi metrics-server-8456fb6676-fwh2t 10m 19Mi tiller-deploy-7bf78cdbf7-9q94c 1m 16Mi ``` 遗憾的是,当前Kubernetes Dashboard还不支持metrics-server。因此如果使用metrics-server替代了heapster,将无法在dashboard中以图形展示Pod的内存和CPU情况(实际上这也不是很重要,当前我们是在Prometheus和Grafana中定制的Kubernetes集群中各个Pod的监控,因此在dashboard中查看Pod内存和CPU也不是很重要)。 Dashboard的github上有很多这方面的讨论,如https://github.com/kubernetes/dashboard/issues/2986,Dashboard已经准备在将来的某个时间点支持metrics-server。但由于metrics-server和metrics pipeline肯定是Kubernetes在monitor方面未来的方向,所以推荐使用metrics-server。 ## 4.总结 本次安装涉及到的Docker镜像: ``` # network and dns quay.io/coreos/flannel:v0.11.0-amd64 k8s.gcr.io/coredns:1.3.1 # helm and tiller gcr.io/kubernetes-helm/tiller:v2.14.1 # nginx ingress quay.io/kubernetes-ingress-controller/nginx-ingress-controller:0.24.1 k8s.gcr.io/defaultbackend:1.5 # dashboard and metric-sever k8s.gcr.io/kubernetes-dashboard-amd64:v1.10.1 gcr.io/google_containers/metrics-server-amd64:v0.3.2 ``` 参考 * Installing kubeadm * Using kubeadm to Create a Cluster * Get Docker CE for CentOS * kubernetes: k8s.io/kubernetes/cmd/kubeadm/app/apis/kubeadm/v1beta2 最后修改:2020 年 01 月 29 日 © 允许规范转载 打赏 赞赏作者 支付宝微信 赞 如果觉得我的文章对你有用,请随意赞赏
此处评论已关闭